
136



Chapter 8

Animations involving numbers

8.1 Model and view

The examples of Chapter 6 all compute the next picture in the animation from the previ-
ous picture. This turns out to be a rather restrictive way to look at things. For example,

suppose we wanted an animation of a digital clock.

How would you go about computing the next picture from the previous one? Well,
first you would have to look at the picture and “read” it: from the pattern of dark and
light pixels in the picture, recognize each of the digits, interpret the sequence of digits as
a number, add 1 to that number, and finally convert the result back into a picture. We’re
asking the computer to do things that humans do easily, but computers aren’t very good
at — things that took our eyes millions of years of evolution, and our infant selves years
of training.

A more sensible approach would be to store the current time directly as a number
(which computers are very good at), and add one second to it at every “tick”. We’d still
need to convert a number to a picture, but this is considerably easier than analyzing a
picture and reading a number from it.

In Chapter 6, I said I was simplifying things. The truth is that an event handler
doesn’t necessarily take in an image; it takes in a “model”, which (for now) can be either
an image or a number. For each animation you write, you’ll need to decide which of these
to use, and stick to that decision throughout the animation.

You can tell DrRacket what kind of model you’re using by adding another event han-
dler to big-bang: either (check-with image?) or (check-with number?) depending
on whether you’re using images or numbers. This makes no difference if your animation
is written perfectly, but if (as will almost certainly happen once or twice) you get con-
fused, and write part of it to work on images and another part to work on numbers, a
check-with handler allows DrRacket to give you better error messages, so you can figure
out more easily what went wrong. We’ll explore check-with more thoroughly in Chap-
ter 14, but for now suffice it to say that image? is a built-in function that checks whether
something is an image, and number? similarly checks whether something is a number.

The details are in Figure 8.1.

137



138 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Figure 8.1: Event handlers for animations with image or numeric models

The big-bang function has the contract

; big-bang : model (start) handler ... -> model

where model is either number or image.

tick handlers must have the contract

; function-name : model (old) -> model (new)

They are installed with (on-tick function-name interval ). The interval is
the length of time (in seconds) between clock ticks; if you leave it out, the ani-
mation will run as fast as it can.

key handlers must have the contract

; function-name : model (old) key -> model (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name ).

mouse handlers must have the contract

; function-name : model (old)

; number (mouse-x) number (mouse-y) event

; -> model (new)

The first parameter is the old model; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third number represents
the y coordinate, indicating how many pixels down from the top the mouse is; and
the “event” tells what happened (the mouse was moved, the button was pressed
or released, etc.); we’ll see in Chapter 18 how to use this.

They are installed with (on-mouse function-name ).

draw handlers must have the contract

; function-name : model (current) -> image

and are installed with (on-draw function-name width height ).

If you leave out the width and height, the animation window will be the size and
shape of the result the first time the draw handler is called.

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given, and it’s useful if you need to specify the width and
height of the animation window but don’t want to write your own draw handler.

To specify the model type , put in another event handler: either (check-with

image?) or (check-with number?), depending on whether your animation uses
images or numbers as its model.



8.2. DESIGN RECIPE 139

SIDEBAR:

This idea of distinguishing between a “model” of reality and the way that model
appears visually is called the “model-view framework”. If you have friends or relatives
who do computer programming, tell them you’re studying the model-view framework
and they should know what you mean.

8.2 Design recipe for an animation, second version

Now that we know about different types of models, we’ll add to the earlier design recipe.
The result is in Figure 8.2.

To illustrate it, let’s work some examples. Everything in Chapter 6 still works, using
images as our models. But we can now do much more. We’ll start, as before, with an
unmoving “animation”.

Worked Exercise 8.2.1 Develop an animation whose “model” is a number, and
whose “view” is a blue circle of that radius. For now, it won’t change.

Solution: Since the animation won’t actually change, we don’t need a tick-handler, a
key-handler, or a mouse-handler; we’re not sure yet whether we’ll need a draw handler.

We’ve been told to use a number as the model, so that decision is made. Since the
model isn’t an image, we’ll definitely need a draw handler.

The draw handler needs to take in a number and return an image of a blue circle
whose radius is that number. Let’s name the function blue-circle-of-size.

Contract:

; blue-circle-of-size : number(radius) -> image

Examples:

(check-expect (blue-circle-of-size 2)

(circle 2 "solid" "blue"))

(check-expect (blue-circle-of-size 37)

(circle 37 "solid" "blue"))

Function skeleton:

(define (blue-circle-of-size radius)

...)

Inventory:

(define (blue-circle-of-size radius)

; radius number

; "blue" a string I know I’ll need

...)

Body:

(define (blue-circle-of-size radius)

; radius number

; "blue" a string I know I’ll need

(circle radius "solid" "blue")

)



140 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Figure 8.2: Design recipe for an animation, version 2

1. Identify what handlers you’ll need (check-with, draw, tick, mouse, and/or
key).

• You should always have a check-with handler.

• If your animation needs to change at regular intervals, you’ll need a tick
handler.

• If your animation needs to respond to mouse movements and clicks, you’ll
need a mouse handler.

• If your animation needs to respond to keyboard typing, you’ll need a key
handler.

• You’ll always need a draw handler. If your model is exactly the image you
want to show in the animation window, you can use show-it; if not, you’ll
need to write your own draw handler.

2. Decide what type a “model” is — image or number, for now — and what it
“means”.

What kinds of changes do you want to make in response to events? If
they’re easily described by arithmetic, use a number; if they’re image operations
(e.g. rotate-cw), use an image. If neither, see Chapter 10.

If you decide to use a numeric model, you still need to decide what it means : a
rectangle’s height, a circle’s radius, a string’s length, something’s x coordinate,
. . .

If you decide to use an image model, follow the recipe of Chapter 6.

If you decide to use a number as the model, you’ll definitely need to write a draw
handler.

3. Write the contracts for the handlers, using Figure 8.1. Again, the function
names are up to you, but once you’ve chosen a type for your model, the contracts
must be exactly as in Figure 8.1.

4. Develop each of these functions, following the usual design recipe for each
one. Don’t go on to the next one until the previous one passes all of its test cases.

5. Decide on the initial number the model should start at.

6. Decide on the width and height (if the draw handler doesn’t produce some-
thing of the right size).

7. Decide on the time interval between “ticks” (if you have a tick handler).

8. Call big-bang with the initial picture and handlers (specified using check-with,
on-draw, on-tick, on-mouse, and on-key). See whether it works.



8.3. ANIMATIONS USING ADD1 141

Test this function to make sure it works correctly by itself.
To run the animation, we need to make some more decisions: what is the unchanging

radius of the circle? (let’s try 7), and what shape and size should the animation window
be? I’ll pick 100 wide by 50 high, which should be plenty big enough to show a radius-7
circle. The big-bang call is now

(big-bang 7

(check-with number?)

(on-draw blue-circle-of-size 100 50))

The result should be an animation window, 100x50, containing a blue circle of radius 7.
Notice that when you close the window, it returns the number 7 to the Interactions pane.

Practice Exercise 8.2.2 Try this with different numbers in place of the 100, 50, and
7.

Try this with a string like "hello" instead of a number as the first argument to
big-bang. What error message do you get?

Take out the (check-with number?) handler, and try that same mistake again.
What error message do you get?

Exercise 8.2.3 Develop an animation of a small picture of your choice on a 200x200
white background. The model should be a number representing the x coordinate of the
picture’s location; the y coordinate should always be 50.

Try it with several different numbers as initial models.

The result, like Exercise 8.2.1, won’t actually move, but the picture will appear at a
distance from the left edge determined by the “initial model” in the big-bang call. And,
as with Exercise 8.2.1, we’ll modify this animation shortly to do more interesting things.

8.3 Animations using add1

Recall that for the animation of Exercise 8.2.1, we decided that the model is a number
indicating the radius of the circle. How would we change the radius? Well, if we wanted
the circle to grow over time, we could add 1 to the radius at each clock tick.

A tick handler function, for an animation with a numeric model, must always have a
contract of the form

function-name : number -> number

Conveniently enough, the add1 function (introduced in Chapter 7) has exactly this
contract, so we can use it as a tick handler without needing to write our own. The result
should be a circle that grows larger every tick:

(big-bang 7

(check-with number?)

(on-draw blue-circle-of-size 100 50)

(on-tick add1 1/2))

(Remember, the 1/2 means the clock should tick every half second.)

Practice Exercise 8.3.1 Try this.



142 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Exercise 8.3.2 Modify the display of Exercise 8.3.1 so that the circle appears centered
and unmoving in a 200x200 white background, so it appears to grow around a fixed center.

Exercise 8.3.3 Modify Exercise 8.2.3 so that the picture moves 1 pixel to the right
every 1/10 second.

Hint: This doesn’t require writing any new functions at all, only changing the big-bang
call.

Exercise 8.3.4 Develop an animation of a square, initially 1x1, which grows by 1
pixel in each dimension at each clock tick, centered in a 200x200 window.

Note: You may find that the square seems to jiggle slightly from upper-left to lower-
right and back. This is because DrRacket uses integers for the positions of images; when
the square has an even size, its center is exactly halfway, but when it has an odd size,
its “center” for drawing purposes is half a pixel above and to the left of its actual center.
Why didn’t this problem show up in Exercise 8.3.1?)

Exercise 8.3.5 Develop an animation of a rectangle, initially 2x1, which grows by 1
pixel in height and 2 in width at each clock tick, centered in a 200x200 window.

Hint: Have the model represent only the height; put together the right picture from
this information.

Exercise 8.3.6 Develop an animation that displays a small dot or star at a location
that varies over time. The x coordinate should be simply t, and the y coordinate t2/20,
where t is the number of ticks since the animation started.

Hint: Write a “helper” function y-coord that takes in the current value of t and
computes t2/20; use this function in your draw handler.

Exercise 8.3.7 Modify the animation of Exercise 8.3.6 so that the x coordinate is 100+
50 cos(t/10) and the y coordinate 100 + 30 sin(t/10).

Hint: This will show up better if you use a short tick interval, or leave it out completely
so the animation runs as fast as possible.

Exercise 8.3.8 Add the variable definitions

(define XCENTER 100)

(define YCENTER 100)

(define XSCALE 50)

(define YSCALE 30)

to your definitions pane, and replace the formulæ in Exercise 8.3.7 with

x = XCENTER+XSCALE ∗ cos(t/10)

and

y = Y CENTER+ Y SCALE ∗ sin(t/10)

The animation should still work exactly as before. Check that it does.



8.4. ANIMATIONS WITH OTHER NUMERIC FUNCTIONS 143

Now change the definitions of some of the variables to different numbers and run the
animation again. Can you predict what will happen?

There are two other “magic numbers” still in the program: the 1/10’s inside the cos

and sin functions. Replace these too with variables; make sure the animation works as
before, then try changing these values and predict what will happen. For example, what
happens when these two numbers aren’t the same: when one is twice the other, or three
times the other, or slightly more or less than the other?

Exercise 8.3.9 Write an animation that shows a blue progress bar 20 high by 120
wide, initially just an outline but filling in from left to right at 1 pixel per quarter of a
second.

Note: Depending on how you write this, your animation will probably stop changing
after 30 seconds, when the progress bar reaches 100% full. In fact, it’s still running, but
not showing any visible change. We’ll learn in Chapter 15 how to have it actually stop at
a specified point.

8.4 Animations with other numeric functions

Of course, you can do much more interesting things to a numeric model than simply add
1 to it. For example, you can write an add5 function that takes in a number and adds 5
to it, and use this in place of add1 for the examples in Section 8.3, to get a blue circle
that grows by 5 pixels at a time, or a digital counter that counts by 5 rather than 1.

Here’s another example.

Worked Exercise 8.4.1 Write an animation of a picture of your choice that moves
right 1 pixel whenever the mouse is moved or clicked, and left 4 pixels whenever a key is
typed on the keyboard.

Solution:

What handlers do we need? The animation needs to respond to the mouse and the
keyboard, so we’ll need a mouse handler and a key handler. If we use a non-image
model, we’ll also need a draw handler.

Identify the model: The next step in designing an animation is deciding what type the
“model” is, and what it “means”. The only piece of information that changes in
this animation is the x-coordinate of a picture, so let’s say our model is a number
indicating the x coordinate of the picture.

(You could try to do this animation using an image as the model, moving it to the
right with beside and to the left with crop-left. Unfortunately, if it “moved” off
the left edge of the screen, the picture would be reduced to nothing, and subsequent
attempts to “move it right” wouldn’t bring it back. Using a number as the model,
we can move it off the left edge, then bring it back onto the screen, as many times
as we like.)

Contracts for handlers: Draw handlers always have contract

; handle-draw : model -> image

We’ve decided that for this animation, “model” means “number”, so



144 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

; handle-draw : number -> image

Key handlers always have contract

; handle-key : model key -> model

For this animation, that becomes

; handle-key : number key -> number

Mouse handlers always have contract

; handle-mouse :

model number(mouse-x) number(mouse-y) event

-> model

In our case, this becomes

; handle-mouse :

number(old) number(mouse-x) number(mouse-y) event

-> number(new)

Write the draw handler: Since our model is a number, we’ll need a draw handler to
convert it into an image. Let’s use our favorite calendar picture, and (since the
assignment says it moves only left and right) decide that it’ll always be at a y-
coordinate of, say, 50. Since it’s moving only left and right, a window height of 100
should be plenty, with a window width of (say) 500.

If you did Exercises 8.2.3 and 8.3.3, you’ve already written a draw handler that
will work for this; the only change is the size and shape of the background. Let’s
suppose you wrote one named calendar-at-x.

Write the mouse handler: We need to move right (i.e. increase the x coordinate)
whenever there’s a mouse event, but we don’t care about any of the details of the
event. So we’ll write a function with the contract

; add1-on-mouse : number(x)

; number(mouse-x) number(mouse-y)

; event -> number

(Remember, the first parameter to a mouse handler is always the current model,
which for this animation is a number representing the x coordinate of the picture.)
We’re ignoring mouse-x, mouse-y, and event, so the following examples should be
enough:

"Examples of add1-on-mouse:"

(check-expect

(add1-on-mouse 3 29 348 "blarg") 4)

(check-expect

(add1-on-mouse 15 503 6 "glink") 16)



8.4. ANIMATIONS WITH OTHER NUMERIC FUNCTIONS 145

The skeleton comes directly from the contract:

(define (add1-on-mouse x mouse-x mouse-y event)

...)

The inventory simply adds the four parameters:

(define (add1-on-mouse x mouse-x mouse-y event)

; x number

; mouse-x number (ignore)

; mouse-y number (ignore)

; event whatever (ignore)

...)

In the body, we merely need to add 1 to x:

(define (add1-on-mouse x mouse-x mouse-y event)

; x number

; mouse-x number (ignore)

; mouse-y number (ignore)

; event whatever (ignore)

(+ x 1) ; or, if you prefer, (add1 x)

)

Test this, and we can go on to the next handler.

Write the key handler: This is quite similar to the mouse handler. My solution is

; sub4-on-key : number (x) key -> number

(check-expect (sub4-on-key 7 "dummy argument") 3)

(check-expect (sub4-on-key 4 "whatever") 0)

(define (sub4-on-key x key)

; x number

; key whatever (ignore)

(- x 4)

)

Test this, and we can go on to running the animation.

Initial model: Let’s start halfway across the window, at an x coordinate of 250.

Call big-bang: We’ve already made all the decisions, so all that’s left is

(big-bang 250

(check-with number?)

(on-draw calendar-at-x)

(on-mouse add1-on-mouse)

(on-key sub4-on-key))



146 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Exercise 8.4.2 Write an animation of a picture of your choice that starts at the top
of the screen, and moves down by 5 pixels every half second. Use a number, not an image,
as your model.

Exercise 8.4.3 Write an animation of a dot that doubles in size every 5 seconds, but
shrinks by 4 pixels every time a key is typed on the keyboard.

Exercise 8.4.4 Write an animation in which a red disk — say,

(circle 15 "solid" "red")

— alternates every second between x-coordinate 20 and x-coordinate 60 on a fixed back-
ground picture. (Try

(beside (circle 20 "solid" "blue") (circle 20 "solid" "green"))

as the background picture.)

Hint: Use overlay/xy or place-image to place the dot at a specified x coordinate,
which should be the model.

Exercise 8.4.5 Write an animation of a progress bar (as in Exercise 8.3.9) that starts
at 120, and is cut in half every second thereafter: 60, 30, 15, . . .

8.5 Randomness in animations

We can use randomness to make our animations more interesting.
Hint: Perhaps the most common mistake I’ve seen students make on these exercises is
putting randomness into a draw handler, which is almost never a good idea. If something
is supposed to be changing randomly, you probably want to remember that change for
later events, which means it needs to affect the model. Draw handlers don’t affect the
model, only the way the model appears on the screen right now. If you use random in

a draw handler, you’re probably doing something wrong!

Exercise 8.5.1 Write an animation of a picture of your choice that appears each
second at a different x-coordinate (and the same y-coordinate), chosen from among the
five choices 20, 60, 100, 140, 180.

Hint: There are 5 choices, so you’ll need to call (random 5) somewhere in the simula-
tion. And your draw handler will have to convert from a 0-4 choice to one of the specified
numbers; what algebraic formula would do that? Be sure to test your function using
check-member-of.

Hint: You can do this with no model at all, putting all the work in a draw handler
that ignores its input and uses random. But that goes crazy as soon as the user moves
the mouse or types on the keyboard — a good example of why it’s better to put the
randomness in the tick handler, not the draw handler.

Exercise 8.5.2 Write an animation of a picture of your choice that moves either 1
pixel left, 1 pixel right, or not at all, with equal probability, four times a second.



8.6. REVIEW 147

Hint: How many choices are there? How can you convert them into a modification of
the state of the model?

Exercise 8.5.3 Write an animation that starts with a blank screen, and each half
second adds a small dot at a completely random location — both the x coordinate and the
y coordinate are chosen at random.

Hint: Since you need to keep all the previous dots and add one more, your “model”
should probably be an image rather than a number. How can you add a dot at a specified
location to an existing image?

Hint: It would be especially nice if you could start the animation with any image, of
any size or shape, and it would sprinkle dots at random all over that background, without
rewriting the handlers.

8.6 Review of important words and concepts

Now that we know how to write functions with numeric values, we have a lot more
flexibility in creating animations: we can have a number as the “model”, change it one
way on clock ticks, change it another way on mouse actions, and change it a third way
on keyboard actions, as long as we write a suitable draw handler to convert from number
to image.

Racket’s random number generator can be used to make animations more unpre-
dictable and interesting.

8.7 Reference

There are no new built-in functions or syntax rules in this chapter.


